Estimating Frequency by Interpolation Using Least Squares Support Vector Regression
نویسندگان
چکیده
منابع مشابه
Using Least Squares Support Vector Machines for Frequency Estimation
Frequency estimation is transformed to a pattern recognition problem, and a least squares support vector machine (LS-SVM) estimator is derived. The estimator can work efficiently without the need of statistics knowledge of the observations, and the estimation performance is insensitive to the carrier phase. Simulation results are presented showing that proposed estimators offer better performan...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملMulti-output least-squares support vector regression machines
a Information Technology Supporting Center, Institute of Scientific and Technical Information of China No. 15 Fuxing Rd., Haidian District, Beijing 100038, China b School of Economics and Management, Beijing Forestry University No. 35 Qinghua East Rd., Haidian District, Beijing 100038, China College of Information and Electrical Engineering, China Agricultural University No. 17 Qinghua East Rd....
متن کاملSemi - supervised Least - squares Support Vector Regression Machines ★
In many real-world applications, unlabeled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilize such examples to boost the predictive performance. But previous research mainly focuses on classification problem, and semi-supervised regression remains largely under-studied. In this work, a novel semi-supervised regression method, semi-supervised LS-SVR (S2LS-SVR)...
متن کاملAir passenger forecasting by using a hybrid seasonal decomposition and least squares support vector regression approach
In this study, a hybrid approach based on seasonal decomposition (SD) and least squares support vector regression (LSSVR) model is proposed for air passenger forecasting. In the formulation of the proposed hybrid approach, the air passenger time series are first decomposed into three components: trend-cycle component, seasonal factor and irregular component. Then the LSSVR model is used to pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/648707